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Distribution and Phytotoxicity of Cadmium in Tomato Seedlings 

Un-Haing Cho* and Jung-O Park 
l)epartment of Biology, Changwon National Uniw:rsity, Kyungsangnamdo 641-773, Korea 

Thirly-day-old seedlings of tomato (Lycopersicon esculentum cv. Kwangsoo) were treated with various cadmium (Cd) 
concentrations (0, 10, 50, 100, and 500 uM) for up to 20 days, and the detailed distribution of absorbed Cd and its 
phytotoxicity in different plant parts (root, stem, and leaves) were investigated. The accumulation of Cd in plants 
increased with external Cd concentrations and Cd was strongly retained by roots, with less than 30% of the absorbed 
Cd bein 8 transported to shoots. Among the leaves, the lower positioned older leaves accumulated more Cd than the 
younger leaves. Furthermore, Cd-exposure not only reduced the dry weight and length of both shoot and root, chloro- 
phyll levels in leaves, and levels of photosynthesis, but also enhanced the concentration of malondialdehyde (a lipid 
peroxidation product) in all plant parts. Our results indicate that the physiologlcal impairment of tomato seedlings 
exposed to toxic levels of Cd may be related to the internal distribution of absorbed Cd, prolonged exposure, and oxi- 
dative stress in different plant parts. 
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Heavy metal contamination of soils is one of the 
major environmental stresses, and cadmium (Cd) is 
one of the most toxic heavy metals in the present 
environmenl (Wagner, 1993). Cd is easily laken up by 
roots and translocated to different planl parts (Baker 
et al., 1994), and high accumulation generally causes 
growth inhibition and even plant death (Khan and 
Khan, 1983; Ouariti el al., 1997). 

The high sensitivity of plant~ to heavy metals is 
thought to be due to inhibitory effects on enzyme 
activities (Krupa et al., 1993) and membrane trans- 
port (Keck, 1978), membrane damage (De Vos el al., 
1991 ), reduced absorption of other (~tions (Khan and 
Khan, 1983), reduced transpiration (Costa and Morel, 
199]) and photosynthesis (Clijslers anti Van Assche, 
1985), and chlorophyll destruction (Somashekaraiah 
et al., 1992). Both lipoxygenase-mediated lipid per- 
oxidation and inhibition of antioxidant enzymes have 
been suggested to cause metal-induced phytotoxicity 
(Somashekaraiah et al., 1992). 

Cadmium has been shown to enter roots by diffu- 
sion (Cutler and Rains, 1974) and root plasmalemma 
is the primary barrier to Cd -'~ uptake (]uner, 1973). 
Generally, Cd accumulation is higher in roots as com- 
pared to shoots (Salt et al., 199~a; Rauser and Meu- 
wl~ 1995) and absorbed Cd is mainly associated with 
cell walls (Hart et al., 1998) or sequester~l in vacuoles 
(Li et al., 1997). However, Ihe detailed distribution of 
Cd after uptake in various parts of plants is not known, 
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and the basis for high shoot exclusion or restricted 
translocation to the shoot is |• underst(x)d. 

Tomato plants have b~n used as a research model 
to better understand metal uptake and metal-induced 
phytotoxicity (Wollgiehn and Neumann, 1995; Ouariti 
et al. 1997; Mazhoudi et al.. 1997). In tomato seed- 
lings grown in culture solution, lhe accumulation of Cd 
and Cu increase(i with external metal concentrations, 
and was c.(~nsiderably higher in rools than in sh(x)ts 
(Ouariti el al., 1997). However, the relationship 
between biomass and the distribution of Cd in various 
plant parts as well as the mechanism of phytotoxicity of 
such non-transition metal are not well understood. 

In the present work, the distribution of Cd in root, 
stem and wlrious leaw.,s of tomau) seedlings exposed 
to various (id levels was inw,stigated. In addition, the 
formation of malondialdehycle (MDA, one of the lipid 
peroxidation products induced by oxidative stress, 
Buege and Aust, 1978) in various tissues was investi- 
gated to determine whether Cd distribution is related 
to oxidative stress and subsequent growth inhibition. 
The information related to the translocation prcx:ess 
from root to shoot will be valuable in developing safe 
f(x~l plant~ and in increasing crop plant yields. In 
plants where grains or fruits are the consumed ti~ues, 
the lower top/high root Cd accumulation would be 
desirable. Development of crops having the potential 
for lower leaf Cd accumulation where leaves are the 
consumed tissue would al.~) be valuable. Further- 
more, plants with high Cd accumulation might be 
used as effic.ient phytoremediation tools for metal- 
contaminated soil (Salt et al., 1995b). 
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MATERIALS AND METHODS 

Plant Material 

Tomato) seecls (Ly(.of~er.~k:on e~(:ulenlum Mill. (x: 
Kwan~(,o) were gerrninal(,d and ('ullivaled in i)ots 
containing a ix'rl i le:vermi(uli le I I : l ]  mixlure in ,i 
controlled environment chamber al 25"(" with 12 h 
of light (250 LLiM m " s ~) and 7 0 - 8 0 %  humi(l i ly 
Seedlings were supplemenied daily wi lh waler and 
twi(:e a week with n]o(lified H(iagland s(iluli~,l (on-  
laining the following ntmlrii,nls: 28.7 m g/l. NI l ,ll,lJ().i, 
0.71 mg!L II:B()~. 164.1 mg/L Ca(N(),.)_,, (i.()2 m~L 
CuSO4, 2.66 mg!L ferri( iartraR,, 60 19 mg/l MgSO i, 
0.45 mglL M n ( l j ,  0.004 mDIL M(~();, 1:31.1,5 mg/l. 
KN()  :, <in(l 0.055 rn~L ZnSO~. Thirty (lays after gem- 
minalion, C(I was addecl d<iily to the l)Ols a~ 0, I(), 
50, 10(:'. and ~;()0 p M  solutions oi CdCI, in waler. 
Leaves, stems, ,~hools an(I n)(ils were collected fronl 
20 planls undergoing ea(:h t realmenl after I() ,)r 20 (I 
of Cd treatmenl; ten plants were dried for 48 h ai 70"C 
and weighed for I)iomass and Cd deiermirialil ln, arl(I 
the resl were hlken for MI )A  arid ~hlor(~l)hyll ill('a- 
suremenl. The (.'Xl)erimelds were c()ndu(rle(I ~)l'l al 
least fiw' sel)arale ()C(~t.%i()rl.% an(I Ill,'an values an(I St: 
were (:ah'ulated. 

5>,()()() rl)m. lh, '  chl(~rophyll (()ll lenl ()1 supernalanls 
wa., eslimate(I a(c()rding to the method of Arn()n 
(1949): chh ),, q)hyll (pg) =- (20.2 ~\,,.~ ..) .! (8.()2xA,.,, ;). 

lhc' rat(, ol n'.'l l)h(,losynll~(,qs was measure(l in !he 
growlh (:han]l)~,r tJn(ler aml)ienl gn)wlh ("()ndili(ms 
wi lh the l)()rhd)le l)h(~losynlh('si ,, svsl~,m CI-5() ( ) I ( ] [ )  
In( t ISA). Relaliw, CO., assimilali, m rales c()mpare(l 
h ~ onlrol were (alculated and are ~hown in Figure 3. 

Measurement of Lipid Peroxidation 

Ihe level ol hl)i(I lu.,roxide.. ,, in the leaves and r()ols 
wa., (lelermine(l as malondiahlehyd(' (MDA) content 
I)y Ihe thiobarl~lluric aci(I (I BA) re, l( l ion as de.wribed 
l)y I)hin(l~l ,'1 al. ('1987). Fresh ~,,nl)h,s (I ()0-50() rag) 
were weighe(I and ground in ' im l .  ,d 0.1% (w/v) 
l ri(hl~ ~r~ )a(el i( ,  t(i(l. rhe  h~ m~( ~g(,n, de was (enl rifuged 
a! 10,OI)Og al 4"(" f()r 10 rain. Ib a I m L  aliquot (ff 
I t , ,  SUl)ernahlnl. 4 nil. of 20% !ri(:hl(m)a(lic acid con- 
laining 0.3% (wivl lBA  was ad(h:,(I, lhe  mixlure was 
he,~ted at 9.'?( fl)r 30 rain and Ihen (.(~oled on k'e. 
Ih,' mixlure was cenlrifuged at lO,(i0().~ f()r 15 rain 
,m~l the al)~)rl,an(:e was measured al 52,2 and ()0() 
nm. MI )A  (:,)n, enlralion wa~ (al(ulated by subtrad- 
ing Ille A,~., lr,,m the A,.,,,, using a m(dar extin(tion 
~,,lfi,i(,nl of l';S mM Icm ' 

Measurement of Cd 

Leave, and slems were washed lwice in deionized 
water, and Ihe r(~ots ~1 ~ inla('l pl,mls were washe(t 
wi lh ice-cold 5 mM Ca(' l ,  solution I()r 10 rain h) dis- 
place e• O I  (Rauser, 1987). 1he planl 
material was dried for 48 h al 7()"( ,  weighed and 
ground into fine I)ow(ler before wet a.,,hing in 
I - tCIOl : l tN() i  I?,:1) solulion. (.;(I was (h,l(.rmined 
directly by ah,mic ab~)rplion H)e('trot)holomelry 
(Varian 200AA equit)ped with SIPS, Auslralia) u.,,ing 
an air-a,:etylene flame and Cd holh>w-calh(~de laml). 
To delermine soil Cd (:(m(enirati()n.,,, soils were (Iried 
and weighed, and washed f~,r 24 h in sodium acelale 
buffer s,)luti~m (Rau~er, 1987). After lillration lhn)tlgh 
filler pat)er fWhalman N(). 1), Cd (()n(:enlr, dion was 
determined, following a similar meih(~d lo thai 
de~r ibed above. 

Measurement of Chlorophyll Level and Photosyn- 
thesis 

Leave.~ colk~(:h,d at day I0 ()r 2(/alh,r C(I tr,,alment 
were weighed and ground in 8()% ac'el,)ne, rhe 
resulting stmsl)ensi~m was (:entrifuged for 1() rain al 

RESULTS 

Cd Accumulation and Distribution 

hi an eff()rt t(, underslan(I Ih(' fime-c()urse rd accu- 
mulali,)n and <lislribulion ,)f ( d  ill various tissues, 
seedlings were grown in a i)erlile:vermiculile (1:1) 
mi\tur(, st, pplenlente('l (laily ~.il h \ ari~ )u~ (21 levels f( ~r 
u I) to 20 d. lhe .~,(,dling~ a((umulah~d .,,ul)shmlial 
amounls of ( 'd ,n the leav(,s, slem~ and n)ols, anti Ihe 
a(t umulalion m aU tissues inc'n,ased ((recurrently 
wi lh Ihe lreahlienls apt)Ileal ([,d)h, I). (;enerall~; Cd 
,u( umulali()n was highesl in r(, d.s bul was Iowesl in 
Ih(' youngee ~)r ul)perm,sl leave, ~,l a dry weighl 
ba>.is ((:(I Hg g (Iw). Following ( d  ut)lake, r()~ls a(:cu- 
mulaled ~ ~ I L .  )1(~ 1502.9 pg g ' , lw after l( I  d an(I 
18;L3 I(~ {,I()IL() pg g Z(lw ~1 the C(I afleo 2() (I. 
M,.anwhile, ~h(,ds ac(:umul,lte(I ] L 5  l~l 205.6 Pg g '  
(Nx ailer 1() ~1 and 4I .8 tr~ 341 .(, Pg g I(lw ()f Cd after 
.'(I (I. I herel(,r,,, lh(' ( 'd a(curnulation in shools was 
al)l)r()ximak.ly 1().5 h) 28.8% ,~I that in roots. 

l\lthq)ugh ( :(I, ()lllenl in l issu(,s in(Teased wilt] e• 
('rli)Ll% ('~d ( ' ( . l l ( ,nls an('l pr()i~)nge(i treatment, a grad- 
u,lt (le('rea.,,i, ~,f tl~(' a(curnulalion raft() (rool-l()-s()il 
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Cd ratio; was also observed, indicating that the high 
Cd content in soil became a limiting faclor for uptake. 
Another interesting aspect of the distribution data was 
that sh(x)t-to-r(x)t (.'d ratio decreased with increased 
Cd accumulation, indicating that high Cd o)ntent in 
the root became a limiting fac.tor for the translocation 
of absorbed Cd. It is likely that the mobility of Cd 
from roots to shoot is limited at high Cd content or 
that leaves have limited capabilities of C'd accumula- 
tion at this growth stage. Although the 500 /.tM Cd 
trealment was 50 times more concentrated than the 
10 HM Cd treatment, the conc'entration ()f Cd accu- 
mulated after 20 d in roots and shooLs increased just 
17.0- and 8-fold, respectively, which probably indi- 
cates an efficient Cd exclusion both at the root and 
from the shoot. 

In shex)ts, C_:d accumulation wlried in the leaves. 
The first and second leaves contained more Cd than 
the third and fourth ones, and the highest Cd level 
was observed in the first leaves. Analysis of leaf Cd on 
a maturity basis showed that the older leaves (the first 
and second leaves), which occur in the lower part of 
seedlings, had more Cd than the younger leaves. 

Leaf-to-root Cd ratios were found to increase in older 
leaves. Since fifty day-old tomato plants were at phys- 
iologically immature, with emergence of a fourth leaf, 
any variation in Cd concentration in various tissues 
during this period should not have resulted from 
redistribution of Cd. 

Although total Cd accumulation in stems increased 
with exposure levels, the stem-to-root Cd ratio was 
rather constant, indicating the increased Cd transloca- 
tion from stem into leaw~s or the limited transloca- 
tion of Cd from root into sh()ot. 

S e e d l i n g  G r o w t h  

The effects of Cd on seedling growth, expressed as 
dry weight and length of both shoot and root, are 
shown in Figure 1. Cadmium exposure induced the 
substantial decreases of dry, weight and length of 
roots and shoots, depending upon the levels of Cd 
exposure and accumulation, duration of exposure 
time and tissues. In the shoot, early 10-d exposure 
increased dry weight slightly with 10 and 50 !~4 Cd 
but further exposure (20 d) decreased dry weight 

Table I .  Distribution Cd in tomato ~,edings grown in perlite: vermiculite (I :1 ) mixture supplemented daily with various Cd con- 
centrations for up to 20 d. 

Cd Ireatment Cd Conlenl (l.lg g- ] dD' wt.) 

IIJMI /st leaf" 2nd leaf 3rd h,af 4th leaf Slem Shool' R(x)t N)il Stem/ Sh(x~/ Root/ 
Soil Soil Soil 

10d 

20 d 

10 59.9_+11.0' 56.8+4.6 35.4• NA a 30.4_~9.8 33.5:t1.3 192.0_+27.6 3.5_+0.1 8.7 9.6 54.6 
(33.9_+5.2V (32 .2-+ 1.7) (22.6• NA 117.3+-6.I) (18.9• 

50 97.51_+I.I 91.31-+.2.4 67.2~17.3 NA 58.5~_I().I 76.f)tlO.4 421.5• 14.1+0.1 4.1 5.4 29.9 
(26.7-+8.4) (25.0-_8.4) (21.9+-9.1) NA (15.4_~6.5) (21.O• 

10() 113.4-+2.3 113.8_+19.4 85.9+2/) NA 83.3 ~_1.7 89.91• 542.2_+54.1 51.5_+0.2 1.6 1.7 10.5 
(20.9_+3.3) i20.8_+6.8) (16.2+1.7) NA (15.4 ~1.8) (16/i:~.I.5) 

5(X) 260.6-+05.4 209.6-+3L0 190.8• U.O NA 281.O~54.9 205.(,_~52.1 1502.9+296.4 )43.6_+0.3 0.8 0.6 4.4 
(18.1 +_0.6) 114.8-+ 1.5) (13.4_+ I. ~) NA iI().7 ~:I.2) (15. ~,_~ 7.~) 

10 89.8-+5.0 92.7-+L5 61.1• 27.2,-+2.3 17.6 ~9.3 41.8~:4.4 188.3_+36.2 7.3+0.0 2.4 5.7 25.8 
(60.8+2.6) (62.5-+0.61 (41.1• (18.9_+4.4) I11.0 ~-6.5) (28.tL--6.51 

50 171.8_+9.1 160..]_+.9.4 122.8 + 15.3 83.9. +. 7.6 53.9:5.7 I04.9_~:0.4 607.4~95.6 43.7-+0.1 1.2 2.4 13.9 
(35.2-+&9) i32.9_+8.7) 125.7.+_9.21 (17.3~.0) (11.1 ~3.2) (21.2~:3.9) 

100 I(/9.3_8.3 205.7_+2.6 144.4~_I0.I 113.4• 84.3 ~.3.4 145.1• 1092.8+__100.O 54.1+0.1 1.6 2.7 20.2 
(22.3-+4.3) (22.9_+4.0) (16.3_+s (13.0~4.3) (9.4+1.7) (16.I_- 2.I) 

500 4()8.6_+4~.0 390.4-+9.0 306.8+_23.3 257.1 -+L0 456.7 ~_45.0 341.0-+.15.4 3308.0_ + IC~).5 40(1.7_+1.7 1.1 0.9 8.3 
(12.3-+0.6) ~11.8• ((kg• i7.6~.I.3) (13.7 ,:3.2) (IO.5~ 1.7) 

"Leaf number is from the bottom of lhe plant. 
blnta(t shoots containing leaves, stem and ap~,x were used for analvsis of 
"Data are the means • of five independent replicates. 
dNA: data nol available. Tile fourth leaves art? nol awlilable at day IO. 
"Relalive at'cumulation ratio compared to root (%). 

Cd (x)ntent. 
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with over 50 HM Cd. N() ~ubstanli,fl length (tec:reas(, 
was obs(,rve(I wi th u I) lo 51) p M  C(I dur ing the early 
11)-(I ex[x)sure, and h ~ngt,r (-,xp().~ure inch,e( I  an 
increa~ of length wi th  !() HM C(I and ,~ slight 
decrease with 4~v(,r 50 HM (:(I I(,v(,l~. In the n~ot, ('(I 
exposur,, of (w(,r 5(.) p M  rt,~ulted in ,~ (l(,cr(,,~e of d~, 
weighl in sh4x~ls bt l l  1/o (le(r(,as~, 4,f sh(),)l length 
(:x(:ept with high Cd exl)osure (5(.)0 ,LiNt). 

In i('rms ()f It~' am()Lii)l 4:,[ ("(I a(:( umulate(I ~ I-abh: I 
and Fig. 1), afh,r 20 (1 a final 4 lJ~ pg g ~(k.v ()1 C(I 
a(:(:umutate(I in sh(x.)ls eXl)().,,e(I I(, I() HM ( d, and 
indu(( 'd an in~.rvase ()f .~h(~<~t h,ngth hut no ,t , ,mge (~I 
(In/welt,hr. l-I()wever, shools exl)4)s(,d t(~ 3I) HM Cd 
for 2() (1 ac(t lmul, | ted 1(]4.'} ILtg, n'(lu(:i|~g I)oth (try 
weight  and length (d sh(,()l. Ther(.l,~re, ,|l)4~ut 1 ()(I 
,ug g~( lw  in the sho()l might l)(.', mguire(I I() re(hit:(, 
both dry weight .rod length 4)f tl)~' shoot, in r(>4~t 
exp()sed to 3() .uM C.d. 421.5 an(I ()07.4 ,LI o~ ()1" ( ' ( I  
accumulated alh'r  10 an(I 20 d, r(",~l)('(:tivel~., resull- 
ing in reduced (1~, weight. I-Iowev(,r, the a(4umula- 
tion of ,~1 ) Io 1,()(~2.~ Pg ~)l C({ in the root was n()l 
enough t() reduce root h.'nglh (,yen hv (lay 2(). Fh('r('- 
[()re, r()(d gr()wth was I(,ss s(~nsitive t() Cd a~.4umula- 
Iion than sh4,ot growth in :pi le of the higher h.,v(,l~, o1 
C(I a(cumulal i ( ,n.  The growth re(h, l i~)n (~l)s(,rve(I ,d 
high do.,,es of (i(I (Ioselv v~m~(:i(le(l wi lh (:(,~sider,|hh., 
a(:cun~ulation of this m(,tal ~ral)l(~ I), ~,~,pe(.ially in the 
shoots. 

Chlorophyll Formation and Photosynthesis 

h~ s l)ite ( )1" ,t st Jl).~lantial am< ~unl ~ ,1 ( (I a(c umulal ion 
(lal)l(, I), l~n-~l, ly (,xp()sur(, h) C~I wa~ not enough t4) 
(I(,4 r(,ase ~hl,>,,l)hyll (()ntents in all lhe leaves stu(li(,(I 
(li~. 2}. I h>wev,,I: lurther (,xi)~stlr(. l() o'~.,~,r ~0 .LIM (:(l 
i, ,r d I) t() 20 (Ira,.', r(,sulted in ,~ ,;ul).,,lantial r(,(lu('tion i~; 
lh~, (:hlor(~/)hyll c4~nl(,nls (d h~th the first an(I se(',~n(! 
I('dve.',. ("hl(,'()s~ was Ioun(I in th,' ~l(h,r h~av(,s, whi(:l'. 
might Ix' rel,ll(,(l t4)i.)refer(,ntlal ( .d ,w~umulati()n in 
the' I('dV('~,. In !l~(, ihir(l h',w('~, m4~re a((unlulal i(~n 
( ~ l l f ) .~  H~  ,g ~ ( IW ( : ( I  (.'Ol~l(.'l'll ,|t ~'l,:~V 20 )  WaS required 
h~ (le(:rea.~e ~t)1, ~rophyll (~,lflc, nl. 1 h('s(' results imply 
Ihal ((t-indu~.~,(t, hl(~r()phyll r('(h =~:~ ion depends upon 
( ( I  a~. ~umulati(~n in tissue.,,, h,af i)~ ~,,iti, ~n, gr( ~wth slap, v 
,m(I eXl)OSun, lim(,. 

I o(IV~'.', grown ,11 aml)ienl ( ( ) .  h.vels and ~ul)jected 
l~) C,:t stress ,,h,)wed a r('(ILl(ti(~l~ ()1 i)hot()synthesis 
(I ip. 3). (..4)ml)ar('(l h~ th(' y~)un~(,r lhir(l leaves, m()r(, 
l('(ItJ~ ti()ll W',i~, ~t)serv(~(I wi th the (~lder first leave.',. 
I h(,rel()r(,, (( I - in( lu(( ,( I  r(,(lu(li4~l) of i)h(~l()synthesis 

Figure 1. Dn/ wt,ight.,, and I(,nglhs ~Jf ~ho~d ,m(I ro~)l 4,1 
h)mato s~,edliilg.,, (,Xl)~,(I h~ ~,ari~ ~u..,, ( d h,v(,I.,, I'~ ,ru I) h~ 20 
(lays. Ve~li(al I)ar~, indi(al<' SI. Irom fly(, in(l(,IX'n(I,'nl r~'l)li- 
('(It (.~,. 

Figure 2. ('hh)r. ,phyl114w(,l~, (,f ~,~f i(,u.,, h,aw,s of mrnat() 
~.,,,~dling~, ,,• 1o vari()u,, ( d  h,v~.ls I~, up to 20 day,,. 
V(,,liv.d I)ar.,, in, li(dh, SE hom iiv(, indepen(h,,d rt'l)li- 
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Figure 3. Phoh)synlhesis ol the first and the sea)nd leaves of 
tomato seedlings exposed to wlrious Cd levels for up Io 20 
days. Relative photosynthesis rates o ~mpared to control are 
shown. 

might depend on leaf age and ('d accumulation. No 
decrease of chlorophyll level (Fig. 2) but a reduction 
of photosynthesis at a lower level of Cd exposure (10 
pM, Fig. 3) implies that the lowered chlorophyll for- 
mation is not the only reason for the reduced ph()to- 
synthesis. 

Figure 4. MDA contents of Iomato seedlings exposed to var- 
ious Cd lew, ls for up to 20 (Jays. Vertical bars indicale SE 
from five independent replicates. 

Lipid Peroxidation 

1-o determine whether Cd-induced reduction of 
.seedling growth, chlorophyll level and photosynthesis 
resulted from oxidative stress-induced lipid peroxida- 
lion, MDA formation was investigated. MDA has 
mainly been identified as a product of lipid peroxida- 
lion (Buege and Aust, 1978). Figure 4 shows a consis- 
tent increase in MDA level parallel to increased Cd 
levels, particularly at 10 d. In both roots and the first 
leaves, a substantial increase ()f MDA was observed at 
day 10 but no increase except at 500 pM Cd was 
observed a! clay 20. In the so:ond leaves, MDA 
increase wa.~ observed at clays 10 and 20. However, 
in the third leaves, MDA increase was ob~rved only 
at clay 10 in leaves with greater than 100 pM Cd 
exposure. Therefore, the extent of MDA production 
responding Io Cd exposure varied among tissues and 
depended upon leaf age and exposure time. 

DISCUSSION 

Alth()ugh a number (ff studies demonstrated a gen- 
erally reduced transfer between roots and shoots 
(Page et al., 1972; Weigel and Jager, 1980), details 
have not been provided with respect to time and 
c(~ncentrati(~n in specifi( tissues to allow for distribu- 
tion in the growing plant. Sill('(' translocation requires 
the movement of Cd a(:r-s.~ tile endodermis, mem- 
brane integrity to allow the symplastic movement 
might be important for the continuous Cd accumula- 
tion in shoots. I1 is possible that the absorption ability 
of sh(x~t tissues depends upon the extent of damage 
to the cell membranes, lhis could also help to 
explain why the proD)rtion ot absorbed cadmium in 
tissues fell towards the higher (~ldmium concentra- 
tions in .~)il (Table 1). Redu(:ed dry weight (Fig. 1) and 
high MI)A production ot~,~rved at day 10 (Fig. 4) 
might indi(ate the extent of cell damage. 

However, since high Cd retention in roots might be 
due to cro.~s-linking of Cd to carboxyl groups of the 
cell wall (Barceh~ and Poschenrieder, 1990) and/or to 
an intera(.~ion with thiol residues of soluble proteins 
I.Leita et al.. 1993), and since Cd was found mostly in 
the cell wall and in s()luble fractions (Lozano-Rod- 
riguez et al., 1997), high ('d ac(:umulation in r(x)ts 
even with substantial cell damage might be possible. 
The continuous increase in Cd accumulation at 
higher Cd accumulation (Table 1 ) and high MDA pro- 
(luttion measured at day 10 (Fig. 4) in r(x~ts could be. 
explained on this basis. N~ increase of MDA mea- 
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sured at (lay 20 nlight indicate thai the r ~ l  tissues 
exlxi~..,d to Cd for prolonged l)eriocls were too dis- 
rupted to produce further MDA (Ouariti el al., 1997L 
Anatomical ch,lrac.terislic.~ of roi~Is may play ,in 
impoilant role in the low leaf/high root character 
lWagner and Yeargan, 1986). A holler under.,,landing 
of them, r(x)t transport pr<>(esses sh,~uld facilitate the 
production of planls with an im reasl,d ability Io accu- 
mulate (:d within their shoots and roots. 

In lea\.es, (LI ace umulation may bt, driven by active 
transpiration (llardiman and la(.<>l)~,; 1984) since 
more a( cumulation in the mature leaves (the first an(l 
second leaves) was ol)served. It ha+ been suggesled 
that the stem behaves as a calion e• column 
resulting in a d~romatogral)hic distrihution ill metals 
towards the lop oi the lilant, and the total amount of 
Cd al~rber by Ix+an plants coul~l be elevated liy 
inducing higher transpirati(~n rates (llardiman and 
lacoby, 19841. 

How Cd increases lipid l)eroxi(l,ilion is rllil clearly 
underst,~od. He, lvy metal.'> are involve~l in many ways 
in the production of active oxygen species that 
induce peroxidaiion of membrane lipids (llalliwel 
and Gutteridge, 1984). Metals are known li~ alter 
rnembr, lne lipid metabolisnl (.Somashekaraiah el al., 
I 992; De Vos el al., 1993; Ouarili c.t al., 1997), dam- 
age cell membranes and cause them to leak (Wain- 
wright ,ind W~,ilhouse, 1973; Strange and Macnair, 
1991). Since (ZI is not an active transition met<il <is 
Cu is ([.)e Vos el al., 199.1b it does not directly gener- 
ate damaging 4,xygen species (()ii,iriti el al., 1997i. 
Howew.~r, Cd and Cu enhance lil)~xygenase activity 
(Somashekaraiah el al., 1992), and lhe liroducls of 
the lip~,xygenase reacti, ln, mainly peroxy, alkoxy ancl 
hydroxyl raciicals, are themselw,s reatlive and can 
resull ill further memllrane lipid deleriorati, ln lead- 
ing to nlembrane permeability lDe Vos et al., 1991 ). 

Prominent Cd-binding complexer~, in l)lanl cells are 
the Col-inducible phylochelalins (t.lys-rk:h llelilicle.s, 
Grill el al., 1985) with lhe slru(ture ~ y-(,lu-( ]y'~),, (Meu- 
wly el ,il., 199.~:,). The biosynthetic l)athway of lhese 
l)eplidt.s inw)lw~s GSH or ils melal)olites (( ;upla and 
Goldsbrough, 1991), ,inil GSH pl,lys an ilnpcli1anl 
role in the control of oxidaliw, stress in lil, int cell.'>. 
Therefi~re, depletion of (;SH due l~i synthesis of phy- 
lochelalins in lhe presence of he, lvy metals may resull 
in an intreat, in oxidative sires.,, Igh\311ge and Mac- 
nair, 1991; 19e W~s et ,il., 1992; l)e V~is el al, 1993). 

Cd-induced lipid peroxidation m lghl be iniluced by 
reduc.ed activities of anlioxidant enzymes su~ h ,is cai- 
alase, GSH-n,ductase ,ind supero• r 
(Somashekaraiah el al., 1992; (:h~, unpublishc-xJ data) 

and sub~,quenl low levels of these enzyme activities 
may resull in lhe enhancement c if free-radical-medi- 
,ileal lipid Ix'roxid,llion (Fclyer el al., 1994). The accu- 
mulati(in of MI.)A in tomato tis.su(,s (Fig. 4) could t~, 
explained on th~,se ba~s, an~l Cd might be (x)nsid- 
t,red ,in c~xid, lhw.,-slr(~s enhan~ ing factor, although 
( d is i'iot a re(h~x-aclive ( :al i i /n.  

I he reduclil ~i~ (~[ dfloroplwll c, inlent, particularly in 
In,llUl'l., leave.~ ll:ig. 2) might be due to increased cell 
c~r lissue dalnage <is estimated by MDA produt:tion 
(Fig. 31. l lowi.ver, in young h:.,aw,s, lipid perclxidalion 
might not be related to the dllorophyll formation, 
,m~ I lJhot(isynllv.,.~is (Jr c(intiriu(lils produclion ~ ~f new 
(ells might rel.~lace the (lamaged cells. It has also 
l)e~,n suggested that metal~ lhenlsi,lw.,s inhibit chhlro- 
llhvll synthesis, {Cliislers and V, in Assche, 1985) and 
int(,tic,re with ph(~l().~tems (Si(~ llecka and Baszynski, 
19,)3). 

( )ur result', shows that the presence of Cd in the tis- 
sues may lle as,,ociated with rapid physiological darn- 
age a.', inlerred Irom the reduclil,n:, of dry weight (Fig. 
I), chlorol)hyll conlenl (Fig. 21 and photosynthesis 
(Fig..ll, and the, differential distribution of Cd among 
the ti.,,sues of seedlings may explain the differences in 
sei~silivily of IV, sues to this inelal Furlher, (d-exl)o- 
,,ule enhan(ed MDA formation (Fig. 4) in all tissues 
sludied, l)resumably due it) (:d-induced oxidative 
sl0~'s.~. Iherefi~n,, physiologi~ al iml)airmenl of tomato 
.~eedlings exl)~sed to (kl may Ix, induced by several 
ta( Iors including the internal dintribulion of absorbed 
(21, prolonged exposure and oxidative stress in differ- 
enl plant l)arls. 
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